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SUMMARY

Renal cell carcinoma (RCC) is not a single disease, but
several histologically defined cancers with different
genetic drivers, clinical courses, and therapeutic re-
sponses. The current study evaluated 843 RCC from
the three major histologic subtypes, including 488
clear cell RCC, 274 papillary RCC, and 81 chromo-
phobe RCC. Comprehensive genomic and pheno-
typic analysis of the RCC subtypes reveals distinctive
features of each subtype that provide the foundation
for the development of subtype-specific therapeutic
and management strategies for patients affected
with these cancers. Somatic alteration of BAP1,
PBRM1, and PTEN and altered metabolic pathways
correlated with subtype-specific decreased survival,
while CDKN2A alteration, increased DNA hyperme-
thylation, and increases in the immune-related Th2
gene expression signature correlated with decreased
survival within all major histologic subtypes. CIMP-
This is an open access article und
RCC demonstrated an increased immune signature,
and a uniform and distinct metabolic expression
pattern identified a subset of metabolically divergent
(MD) ChRCC that associated with extremely poor
survival.

INTRODUCTION

Renal cell carcinoma (RCC) affects nearly 300,000 individuals

worldwide annually and is responsible for more than 100,000

deaths each year. Our understanding of RCC has evolved over

the past 40 years, from considering RCC as a single entity to

our current understanding that RCC is made up of many different

subtypes of renal cancer, each with different histology, distinc-

tive genetic and molecular alterations, different clinical courses,

and different responses to therapy (Linehan, 2012; Linehan et al.,

2010; Moch et al., 2016). The canonical classification of RCC

consists of three major histologic RCC subtypes (Hsieh et al.,

2017; Linehan et al., 2006; Moch et al., 2016). Clear cell renal

cell carcinoma (ccRCC) is the most common subtype (�75%);

papillary renal cell carcinoma (PRCC) accounts for 15%–20%
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and is subdivided into types 1 and 2; and chromophobe renal cell

carcinoma (ChRCC) represents �5% of RCC.

The Cancer Genome Atlas (TCGA) Research Network has

conducted a series of comprehensive molecular characteriza-

tions in distinctive histologic types of cancers including ccRCC,

ChRCC, and PRCC (Cancer Genome Atlas Research Network,

2013; Cancer Genome Atlas Research Network et al., 2016; Da-

vis et al., 2014). These studies revealed a remodeling of cellular

metabolism in ccRCC involving downregulation of Krebs cycle

genes, upregulation of pentose phosphate pathway genes, and

decreased AMPK in higher-stage, high-grade, and low-survival

disease. A distinct PRCC subtype was identified that was char-

acterized by a CpG island methylator phenotype (CIMP-RCC)

and associated with early-onset disease, poor survival, and

germline or somatic mutation of the fumarate hydratase (FH)

gene, and a subset of ChRCC with genomic rearrangements

within the TERT promoter region was identified that correlated

with highly elevated TERT expression and manifestation of ka-

taegis, uncovering a distinct mechanism of TERT upregulation

in cancer. A previous study by Chen et al. (2016) compared all

available kidney tumor samples available within TCGA irrelevant

of histologic type using cluster analysis of the multi-platform ge-

netic and genomic data to show that themajority of the histologic

subtypes could be reconstituted. In addition, this study identified

samples that fell outside of the major subtypes and identified

several mutation, methylation, and immune expression profiles

that correlated with histologic subtypes within the complete

TCGA kidney cohort.

The importance of histology cannot be understated in the

study of RCC. To highlight the most meaningful somatic alter-

ations in the entire cohort and within each major histologic

subtype, we performed an integrated comparative genomic

analysis of all available histologically confirmed TCGA samples

of ccRCC, PRCC, and ChRCC to identify shared and subtype-

specific molecular features that will provide the foundation for

the development of disease-specific therapeutic approaches

and prognostic biomarkers for RCC.

RESULTS

Evaluation of RCC Histologic Subtypes
In total, 894 samples of kidney cancer were initially submitted to

TCGA and were available for analysis, including 537 ccRCC,

291 PRCC, and 66 ChRCC. The initial TCGA analyses of each

RCC subtype had excluded several samples due to inconsis-

tent/incorrect histologic classification or therapy prior to sample

collection. This included the removal of a small number of

samples, such as transitional cell carcinomas, that are kidney

cancers that are not classified as RCCs. Additional samples

not utilized in previous studies were also re-evaluated by histo-

logic review and removed if considered inappropriate and 15

samples originally submitted as ccRCC were reclassified as

ChRCC. This resulted in a final cohort of 843 TCGA-RCC con-

sisting of 488 ccRCC, 274 PRCC, and 81 ChRCC. The 274

PRCC were further divided into four subgroups consisting of

160 type 1 PRCC, 70 type 2 PRCC, 34 unclassified PRCC,

and 10 CpG island methylator phenotype-associated (CIMP)-

RCC (Table S1).
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Comparison of Major RCC Histologic Subtypes
Initial comparison of these RCC was performed using chromo-

somal copy number profiles,mRNA,miRNA, and lncRNAexpres-

sion profiles and visualized in a heatmap with the RCCs ordered

by histologic subtype, then stage, then vital status (Figure 1A).

Clear cell RCC demonstrated significant loss of chromosome

3p and gain of 5q, type 1 PRCC demonstrated gains of chromo-

somes 7 and 17, and ChRCC demonstrated a pattern of chromo-

somal losses that included 1, 2, 6, 10, 13, and 17 (Figure 1B).

These data confirmed previous observations concerning the

copy number patterns within the different RCC histologic sub-

types, and somatically gained alterations in chromosomal copy

number patterns provide the clearest distinction between sub-

types. While specific patterns of copy number alteration were

not observed in the CIMP-RCC or the type 2 PRCC, both demon-

strated an increased loss of chromosome 22 that encodes NF2

from the HIPPO pathway and SMARCB1, a fundamental compo-

nent of the SWI/SNF complex, and the CIMP-RCC had loss of

chromosome 13q at a similar rate to ChRCC (60% versus

61.3%) that encodes RB1 and BRCA2 (Figure 1B). Analysis of

RNA expression across the combined cohort demonstrated

distinct mRNA, miRNA, and lncRNA clusters that associated

with each histologic RCC type. Two mRNA, three miRNA, and

five lncRNA clusters were enriched in ccRCC, while two mRNA,

two miRNA, and two lncRNA clusters represented the majority

of the PRCC (Figures S1A–S1C). The ChRCC samples demon-

strated a distinct uniformity by being present in a single cluster

for each RNA type, while the CIMP-RCC had a distinct mRNA

cluster and shared a lncRNA cluster with the ChRCC.

Survival Differences across the Major RCC Histologic
Subtypes
The variation between the RCC histologic subtypes extended to

survival outcomes (Figure 1C). Previously, CIMP-RCCwas found

to have the poorest PRCC survival but now demonstrated

the worst survival of all RCC subtypes, including ccRCC (p <

0.0001). Clear cell RCC demonstrated the next poorest survival

when compared to all other RCC subtypes, while type 1 PRCC

and ChRCC associated with the best survival that was statisti-

cally indistinguishable (p = 0.9138). These histologic-specific dif-

ferences in survival and the uneven representation of each histo-

logic subtypewithin the cohort produces a potential confounding

factor for survival associations evaluated across the entire

cohort. With clear distinctions between the histologic subtypes

established, survival associations within histologic subtypes

are likely to bemore relevant than those across the entire cohort.

Gene and PathwayAlteration Associateswith Survival in
Specific RCC Subtypes
Previous analyses of each histologic RCC subtype had identified

a combined total of 16 significantly mutated genes (SMGs)

including 9 associated with ccRCC, 11 associated with PRCC,

and 2 associated with ChRCC (Figure S2A; Cancer Genome

Atlas Research Network, 2013; Cancer Genome Atlas Research

Network et al., 2016; Davis et al., 2014). Analysis across RCC

types revealed that TP53 and PTEN were the only SMGs shared

by ccRCC, PRCC, and ChRCC (2.6% and 4.5%, 1.5% and

3.4%, and 31.1% and 8.1%, respectively). Across the entire



Figure 1. Comparison of RCC Histologic Subtypes

(A) Heatmap representation of chromosomal copy number and RNA expression profiles between the different histologic RCC subtypes. Chromosomal copy

number data are ordered by chromosomal arm in descending order (red, gain; blue, loss). The relative RNA expression was assessed for themost variable probes

within the complete RCC cohort for either mRNA (n = 500), miRNA (n = 249), or lncRNA (n = 178) (red, increased; blue, decreased). RCC samples were arrayed left

to right based on histologic subtype (ccRCC, green; type 1 PRCC, light blue; type 2 PRCC, orange; unclassified [Unc.] PRCC, gray; CIMP-RCC, red; ChRCC,

purple), then tumor stage (stage I, light green; stage II, yellow; stage III, orange; stage IV, red), and then vital status (alive, white; deceased, black).

(B) Percentage of chromosomal copy number alterations between the different histologic RCC subtypes.

(C) Differences in patient overall survival between the different histologic RCC subtypes (log-rank p value).
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cohort, neither TP53 nor PTEN correlated with poor survival, but

histologic-specific analysis demonstrated that TP53 mutation

correlated with decreased survival in ccRCC (p = 0.0002) and

PRCC (p = 0.0049), while PTEN mutation correlated with

decreased survival in ChRCC (p = 0.0138) (Figures 2A and

S2B). Clear cell RCC and PRCC, but not ChRCC, shared

three chromatin remodeling SMGs: PBRM1 (38.0% and 4.5%,

respectively), SETD2 (13.2% and 6.4%, respectively), and

BAP1 (11.0% and 5.6%, respectively). While BAP1 mutation

correlated with decreased survival across the entire cohort (p =

0.0002) andwithin the ccRCCgroup (p = 0.0035),BAP1mutation

did not correlate with survival in PRCC or ChRCC. Similarly,

PBRM1 mutation, which has been shown to not correlate with

survival in ccRCC, was found to correlate with decreased sur-

vival in PRCC (p = 0.0008) that was specific to type 1 PRCC

(p < 0.0001) (Figures 2A and S2B). CDKN2Amutation, hyperme-

thylation, or deletion was found in 15.8% of tumors, with alter-

ations in each RCC subtype accounting for 16.2% of ccRCC,

5.0% of type 1 PRCC, 18.6% of type 2 PRCC, 100% of CIMP-

PRCC, and 19.8% of ChRCC (Figure 2B). Loss of the region of

chromosome 9p encoding CDKN2A was the most frequent
event across the cohort (11.7%), followed by promoter hyperme-

thylation (4.2%) and mutation (0.7%) (Table S1). CDKN2A alter-

ation provided the sole example of a change that correlated with

decreased survival across the entire cohort (p < 0.0001) and

in each major histologic subtype, ccRCC (p < 0.0001), type 1

PRCC (p = 0.0067), type 2 PRCC (p = 0.0006), and ChRCC

(p = 0.0018) (Figure 2C).

Eight SMGswere frequentlymutated (R2.0%) inmore than one

RCC subtype. Mutation of at least 1 of the 16 SMGs was found in

81% of ccRCC, 39.1% of PRCC, and 43.2% of ChRCC (Fig-

ure S2A). While the overall mutation rate for ChRCC was found

to be significantly less than either ccRCC or PRCC (p = 0.0254

and p < 0.0001, respectively), the PRCCmutation rate was higher

than ccRCC (p < 0.0001) (Figure S2C). Within PRCC, the most

aggressive subtype, CIMP-RCC, was found to have the lowest

overall rate of mutation. Pathogenic SMGmutations were not de-

tected in several tumors, particularly PRCC and ChRCC. Several

SMGsweremembers of pathways that contained genes mutated

at lower frequencies. In the VHL/HIF pathway, TCEB1 and CUL2

mutations in ccRCC were mutually exclusive with VHL mutation

(Figure S2D). HIPPO and NRF2/ARE pathway mutations were
Cell Reports 23, 1–14, April 3, 2018 3



Figure 2. Gene and Pathway Alteration Associates with Survival Predictions in Specific RCC Subtypes

(A) Differences in patient overall survival within histologic RCC subtypes (ccRCC, green; PRCC, blue; ChRCC, purple) dependent upon gene mutation (log-rank

p value).

(legend continued on next page)
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present in both PRCC (9.0% and 7.9%, respectively) and ccRCC

(3.9% and 3.2%, respectively) (Figure S2D). While chromatin

remodeling pathway gene mutations were notably frequent in

both ccRCC (69.3%) and PRCC (53.0%), they were less common

in ChRCC (14.9%) (Figure S2D and Table S2). Mutations of SWI/

SNF complex genes, including PBRM1, ARID1A, and SMARCA4,

were the most common chromatin remodeling complex alter-

ations within ccRCC (47.1%), followed by mutation of the histone

methyltransferases including SETD2 and MLL3 (23.8%), the his-

tone demethylases including KDM5C (13.0%), the BAP1/ASXL1

histone de-ubiquitinase complex (12.1%), and the histone acetyl-

transferases (4.8%), compared with frequencies of 24.1%,

23.7%, 17.3%, 6.8%, and 7.5%, respectively, in PRCCs (Fig-

ure 2D). Chromatin remodeling gene mutations were more

frequent in type 2 PRCC (55.3%) than in type 1 PRCC (40.6%).

While mutations of the PI3K/AKT pathway were frequent both

across (14.6%) as well as within each RCC subtype (16.2% of

ccRCC, 9.8% of PRCC, and 18.9% of ChRCC), they correlated

with decreased survival only in ChRCC (p = 0.0018) (Figures

S2D and S2E and Table S2).

Mitochondrial (mt) DNA mutation analysis, which was previ-

ously performed only in ChRCC (Davis et al., 2014), was con-

ducted in a representative number of tumors from all RCC

subtypes. Nonsense or missense mutations in mitochondria-en-

coded genes with high heteroplasmy (>75%) as well as frame-

shift mutations with >50% heteroplasmy were considered signif-

icant. Mitochondrial DNA mutations were found in 13% of 62

ccRCC, 33% of 99 PRCC (with similar frequencies for type 1

and type 2), and 20% of 65 ChRCC. High-heteroplasmy trun-

cating (nonsense or frameshift) mutations were enriched in

ChRCC (14%) compared to PRCC (6%) or ccRCC (2%) (Fig-

ure S2F) and mtDNA copy number was increased in ccRCC,

PRCC, and ChRCC that carried mtDNA mutations (p = 0.0036,

p = 0.0036, and p = 0.0029, respectively) (Figure S2F).

Hypermethylation Correlates with Decreased Survival
Previous analyses of methylation by Chen et al. (2016) had

demonstrated that a subset of the DNA methylation probes

within the RCC samples highlighted the differences in cell of

origin for the major RCC histologic subtypes. This subset of

probes was subsequently used to evaluate hypermethylation

patterns within the samples but was potentially confounded

by the difference in tumor origin. While hypermethylated ccRCC

and PRCC samples were identified, no hypermethylated

ChRCC samples were observed. An analysis limited to probes

that are unmethylated in all normal tissues identified in 1,532

variably hypermethylated markers that identified a cluster of

240 RCCs with increased DNA hypermethylation (methylation

cluster 1) that associated with significantly poorer survival (p <

0.0001) (Figure 3A and Table S1). This cluster consisted of the

10 CIMP-RCC, 182 ccRCC (37.3%), 23 type 2 PRCC (32.9%),
(B) Oncoprints for CDKN2A gene deletions, hypermethylation, and mutations for

PRCC, orange; Unc. PRCC, gray; CIMP-RCC, red; ChRCC, purple). Mutations w

(C) Differences in patient overall survival within the histologic RCC subtypes (cc

dependent upon CDKN2A alteration (log-rank p value).

(D) Chromatin remodeling pathway mutation frequency within histologic RCC sub

methylation; Ac, histone acetylation; Ub, histone ubiquitination.
16 ChRCC (19.8%), and a small number of type 1 and unclassi-

fied PRCC. The remaining two clusters, one containing type 1

and type 2 PRCC (methylation cluster 2) and the other contain-

ing ccRCC and ChRCC (methylation cluster 3), had similar sur-

vival. In contrast to the distinct CIMP-RCC tumors that had

notably high levels of DNA hypermethylation, the remainder of

methylation cluster 1 had a less pronounced increase in hyper-

methylation across the genome. Histologic subtype-specific

analysis confirmed decreased survival with the increased

hypermethylation pattern in every major RCC histologic sub-

type (all p < 0.0001) (Figure 3B). Within the PRCC tumors, this

correlation remained significant after excluding the CIMP-

RCC from the PRCC tumors (p < 0.0001) and when type 1

PRCC (p = 0.0328) and type 2 PRCC (p = 0.0314) were indepen-

dently evaluated (Figures 3B and S3A). Increased hypermethy-

lation was associated with higher-stage disease in ccRCC,

PRCC (with or without CIMP), and ChRCC (all p < 0.0001) and

was associated with SETD2 mutation in ccRCC (p < 0.0001),

either PBRM1 mutation or SETD2 mutation in type 2 PRCC

(p = 0.0053, p = 0.0270, respectively), and TP53 mutation in

ChRCC (p = 0.0119) (Figure S3B). Genes represented by the

1,532 probes that characterized the hypermethylated cluster

were enriched for genes in the WNT pathway. Previous studies

have identified hypermethylation of the WNT pathway regula-

tory genes, SFRP1 and DKK1, in ccRCC (Ricketts et al.,

2014). Increased methylation of probes for these two genes

(DKK1, cg07684796; SFRP1, cg15839448) was observed in

the methylated cluster 1 samples (Figure S3C), and hyperme-

thylation of either of these genes correlated with poorer survival

in ccRCC, PRCC, and ChRCC (p = 0.0015, p < 0.0001, and

p = 0.0021, respectively) and in PRCC excluding the CIMP-

RCC tumors (p = 0.0035) (Figures 3C and S3D).

Specific mRNA Signatures Associate with RCC
Histologic Subtypes
Aweighted gene co-expression network analysis (WGCNA), per-

formed to identify sets (modules) of highly correlated genes and

to assess their relationships to clinical variables and biological

functions, revealed several gene modules that differentiated

the RCCs by histology, stage, or survival status (Figure 4). Clear

cell RCC showed the expected increase in expression of the

vasculature development signature, due to activation of the

VHL/HIF pathway, and the previously observed increase in

immune response signature (p = 4 3 10�86) in comparison to

PRCC and ChRCC (Figure 4B). The RNA metabolic process

and the mitotic cell cycle signature was specifically increased

in ccRCC (p = 5 3 10�26 and p = 5 3 10�25, respectively), while

an increased amino acid metabolic process signature (p = 4 3

10�35) and retention of cilium signature (p = 3 3 10�140) was

unique to PRCC (Figure 4B). In ChRCC, an increased ion trans-

membrane transport signature was observed (Figure 4). Subtype
the histologic RCC subtypes (ccRCC, green; type 1 PRCC, light blue; type 2

ere segregated into nonsense (red) and missense (blue).

RCC, green; type 1 PRCC, light blue; type 2 PRCC, orange; ChRCC, purple)

types (ccRCC, green; PRCC, blue; ChRCC, purple). Abbreviations: Me, histone

Cell Reports 23, 1–14, April 3, 2018 5



Figure 3. Hypermethylation Patterns Associate with Survival Predictions

(A) Heatmap representation of the clustering of 1,532 highly variable DNAmethylation probes that were unmethylated in the normal tissues. Amethylation b-value

R 0.3 was considered hypermethylated. Tumors were annotated for histologic RCC subtype (ccRCC, green; type 1 PRCC, light blue; type 2 PRCC, orange; Unc.

PRCC, gray; CIMP-RCC, red; ChRCC, purple), tumor stage (stage I, light green; stage II, yellow; stage III, orange; stage IV, red), vital status (alive, white;

deceased, black), and DKK1 (cg07684796) and SFRP1 (cg15839448) hypermethylation (hypermethylated, dark green).

(B) Differences in patient overall survival within the histologic RCC subtypes (ccRCC, green; PRCC, blue; ChRCC, purple) dependent upon methylation cluster

(log-rank p value).

(C) Differences in patient overall survival within ccRCC and ChRCC tumors (ccRCC, green; ChRCC, purple) dependent upon hypermethylation of either SFRP1 or

DKK1 (log-rank p value).
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Figure 4. RCC Histologic Subtypes Associate with Specific mRNA Signatures

(A) Heatmap representation of the comparison of mRNA expression signatures for major cellular processes between the different histologic RCC subtypes

(ccRCC, green; type 1 PRCC, light blue; type 2 PRCC, orange; Unc. PRCC, gray; CIMP-RCC, red; ChRCC, purple). Tumor stage (stage I, light green; stage II,

yellow; stage III, orange; stage IV, red) and vital status (alive, white; deceased, black) are indicated above the heatmap.

(B) Heatmap representation showing the relationship between gene expression modules and clinical features. Red heatmap shading indicates a positive cor-

relation between a gene module and a clinical feature and blue heatmap shading represents a negative correlation.

Please cite this article in press as: Ricketts et al., The Cancer Genome Atlas Comprehensive Molecular Characterization of Renal Cell Carcinoma, Cell
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analysis of PRCC revealed an increased RNA splicing signature

in type 1 PRCC (p = 23 10�12) compared to type 2 PRCC, while

the cilium signature was significantly higher in the type 1 PRCC

(p = 8 3 10�101) than in the type 2 PRCC (p = 4 3 10�7).

Metabolic Gene Expression Associates with Survival
Evaluation of tumor metabolism was performed by comparing

the expression profiles for 12majormetabolic processes across

all samples (Figure 5A and Table S3). Expression of the Krebs

cycle and the electron transport chain (ETC) genes provided a

clear distinction between the major histologic subtypes, with

low expression in ccRCC and CIMP-RCC, high expression in

ChRCC, and intermediate expression in type 1 and type 2

PRCC (Figure 5B). This correlated with increased expression

of the pyruvate dehydrogenase complex (PDC) activation genes

in ChRCC, that would help fuel the Krebs cycle and oxidative

phosphorylation, and the increased expression of PDC sup-

pression genes in ccRCC, which would result in glycolysis-

dependent energy production (Figures 5B and S4A). Subtype

analysis revealed that glycolytic gene expression was consis-

tently higher in ccRCC and type 2 PRCC, while expression of

the Krebs cycle genes was significantly higher in type 2 PRCC

compared to type 1 PRCC (p < 0.0001) (Figure S4A). Although

expression of PDC activation genes was low in all ccRCC, stage

III-IV ccRCC demonstrated significantly lower expression than

stage I-II ccRCC (p = 0.0005) and lower PDC activation gene
expression in ccRCC was associated with decreased survival

(p < 0.0001) (Figures S4A and S4B). Expression of 50 AMP-acti-

vated protein kinase (AMPK), which negatively regulates fatty

acid synthesis and positively regulates mitochondria produc-

tion, was increased in ChRCC and decreased in the CIMP-

RCC (Figure 5B). As previously observed in the TCGA ccRCC

analysis, AMPK expression was significantly lower in stage III-IV

ccRCC compared to stage I-II ccRCC (p = 0.0005), and lower

expression correlated with poorer survival (p = 0.0005) (Figures

S4A and S4B). Ribose sugar metabolism gene expression

was increased in type 2 PRCC compared to type 1 PRCC

(p < 0.0001) and greatly increased in CIMP-RCC in comparison

to all other RCC subtypes (p < 0.0001) (Figure 5C). The

increased ribose sugar metabolism expression previously asso-

ciatedwith higher stage and poorer survival prognosis in ccRCC

was confirmed in the current study (p = 0.0069), and increased

ribose sugar metabolism expression was found to also be asso-

ciated with decreased survival in PRCC (p = 0.0031) (Figures 5D

and S4B).

Six ChRCC were identified that presented as distinct meta-

bolic outliers within that histologic subtype (Figure S5A).

Compared to the other ChRCC, these samples had low expres-

sion of the Krebs cycle and electron transport chain genes, lower

expression of the AMPK pathway genes, and increased expres-

sion of the genes in the ribose synthesis pathway, and all these

features were associated with poorer prognosis in other RCC
Cell Reports 23, 1–14, April 3, 2018 7



Figure 5. Metabolic Analysis of RCC Histologic Subtypes

(A) Schematic of metabolic pathway genes selected for metabolic analysis.

(B) Heatmap representation of the comparison of mRNA expression signatures for the selected metabolic processes between the different histologic RCC

subtypes (ccRCC, green; type 1 PRCC, light blue; type 2 PRCC, orange; Unc. PRCC, gray; CIMP-RCC, red; ChRCC, purple). Tumor stage (stage I, light green;

stage II, yellow; stage III, orange; stage IV, red) and vital status (alive, white; deceased, black) are indicated above the heatmap.

(C) Comparative expression of the ribose sugar metabolism signature between the different histologic RCC (ccRCC, green; ccRCC stage I/II, dark blue; ccRCC

stage III/IV, dark red; type 1 PRCC, light blue; type 2 PRCC, orange; Unc. PRCC, gray; CIMP-RCC, red; ChRCC, purple).

(D) Differences in patient overall survival within ccRCC dependent upon expression of the ribose sugar metabolism signature (log-rank p value).

(E) Comparative expression of the Krebs cycle, ETC Complex III, AMPK, and ribose sugar metabolism gene signatures between ChRCC and metabolically

divergent (MD) ChRCC (ChRCC, purple; MD-ChRCC, pink).

(F) Differences in patient overall survival between ChRCC and MD-ChRCC (log-rank p value).
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histologic subtypes (Figure 5E). These metabolically divergent

(MD) ChRCC were high stage (stage III or IV), demonstrated

the hypermethylation pattern described above, lacked the chro-

mosomal copy number losses normally associated with ChRCC,

and were associated with much poorer survival in comparison to

other ChRCC (p < 0.0001) (Figures 5F and S5A). Four of the six

MD-ChRCC were found to have sarcomatoid de-differentiation

(Figure S5B). Several of these MD-ChRCCs were initially mis-

identified as ccRCC and then re-assigned after a pathology

review by urologic pathology experts, reflecting their unusual

pathology.
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Immune Signature Analysis
An increased immune cell infiltrate gene expression signature in

ccRCC in comparison to PRCC andChRCC has been elucidated

by several studies, including importance of single gene markers

such as PDCD1 (PD1) and CD247 (PDL1) (Chen et al., 2016;

Geissler et al., 2015). Analysis using a refined immune cell

gene-specific signatures (Table S4) confirmed that, with the

exception of the Th17, IL-8, and CD56bright NK cell gene signa-

tures, there was nearly universal upregulation of these immune

signatures in ccRCC compared to the PRCC or ChRCC (Figures

6A and S6A). The T helper 17 cell (Th17) gene signature had



Figure 6. Immune Signature Analysis

(A) Supervised clustering of immune gene signature (IGS) expression by individual sample (left) or mean IGS expression (right) for the different histologic RCC

subtypes (ccRCC, green; PRCC, blue; ChRCC, purple).

(B) Comparative expression of the Th2 gene signature between the histologic RCC subtypes (ccRCC, green; PRCC, blue; type 1 PRCC, light blue; type 2 PRCC,

orange; CIMP-RCC, red; unclassified PRCC, gray; ChRCC, purple) (t test).

(C) Comparative differences in patient overall survival within the histologic RCC subtypes (ccRCC, green; PRCC, blue; type 2 PRCC, orange; ChRCC, purple)

dependent upon the Th2 gene signature (log-rank p value).
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increased expression in ChRCC, while the IL-8 and CD56bright

NK cell gene signatures had increased expression in PRCC.

Separation of the PRCC tumors highlighted distinct differences

in the CIMP-RCC compared to the remaining PRCC, including

increased expression of the Th2, activated dendritic cell (aDC),

plasmacytoid dendritic cell (pDC), and Mast cell gene signa-

tures, that produced a profile more similar to ccRCC (Figures

6B and S6B). T cell receptor (TCR) profiling used to identify

TCR clonotype expression within the cohort demonstrated pat-

terns of subtype-specific TCR clonotype expression suggesting

variation in T cell response between ccRCC, PRCC, and ChRCC

tumors (Figure S6C). In accordance with previous findings, gene

signatures correlated with reduced survival, including signatures

that represented T cells, B cells, macrophages, dendritic cells,

and NK cells (Figure S6D). The T helper 2 cell (Th2) gene signa-

ture was increased inmost ccRCC, all CIMP-RCC, and in outliers

of the ChRCC, with six of the top seven Th2 gene signature

scores within the ChRCC tumors representing the aggressive

MD-ChRCC tumors (Figure 6B). Notably, an increased Th2

gene signature represented the only biomarker that correlated

with poor survival when evaluated within each major histologic

subtype, ccRCC (p = 0.0001), PRCC (p = 0.0002), and ChRCC

(p = 0.0284) (Figure 6C). Subtype separation of the PRCC

demonstrated that this correlation was present only in PRCC

type 2 (p = 0.0089) (Figure 6C). Expression of the Th17 gene

signature was associated with increased survival in ccRCC

(p = 0.0021), with additional positive correlation in ChRCC (p =

0.0362) (Figure S6E).

DISCUSSION

The importance of identifying and differentiating the subtypes

and even rare variants of renal cell carcinoma (RCC) is critical

for management and treatment of patients affected with this dis-

ease. Although histologic subtyping divides tumors into distinct

RCC groups, it is limited in its ability to provide in-depth analysis

of mechanisms that produce these differences. In the present

study, comprehensive genetic and genomic analysis demon-

strated that different histologically defined RCC subtypes are

characterized by distinctive mutations, chromosomal copy num-

ber alterations, and expression patterns of mRNA, miRNA, and

lncRNA, and that the combination of histology plus genomics

provides unique insight into patient-centered management.

These combined differentiating features, obtained via a tumor

or liquid biopsy, provide invaluable information and prognostic

biomarkers to guide clinical and surgical management.

While this study characterizes the differences between the

major RCC histologic subtypes, shared features within the

RCC subtypes may also provide more universal prognostic

markers and targets for therapy. The loss of CDKN2A, which en-

codes p16, by either gene deletion, promoter hypermethylation,

or mutation, found in 16% of RCC, correlated with poor survival

in ccRCC, PRCC, and ChRCC. Loss of CDKN2A is known to

correlate with poor outcome in ccRCC, PRCC, and other cancer

types, but this demonstrates that it is a universal feature of RCC

and is potentially targetable with CDK4/6 inhibitors that target

the downstream effects of p16 loss (Hamilton and Infante,

2016). Increased promoter hypermethylation also was found to
10 Cell Reports 23, 1–14, April 3, 2018
be associated with decreased survival in ccRCC, PRCC, and

ChRCC. Previous studies have shown increased levels of DNA

hypermethylation correlating with poorer outcome that was

limited to ccRCC and PRCC without identifying potentially

impacted pathways (Cancer Genome Atlas Research Network,

2013; Cancer Genome Atlas Research Network et al., 2016;

Chen et al., 2016). This study highlighted hypermethylation of

WNT pathway regulatory genes and demonstrated that analysis

of hypermethylation in two specific WNT regulatory genes,

SFRP1 and DKK1, recapitulated the correlation with decreased

survival in ccRCC, PRCC, and ChRCC. Increased DNA methyl-

ation was associated with SETD2 mutation, which is known to

alter DNA methylation patterns (Tiedemann et al., 2016), in

ccRCC and PRCC, and increased DNAmethylation was similarly

associated with PBRM1mutation in PRCC. Hypermethylation of

SFRP1 and DKK1 could provide a prognostic biomarker for RCC

and has been previously proposed in ccRCC (Hirata et al., 2011;

Ricketts et al., 2014; Urakami et al., 2006). This suggests that

treatment with de-methylating agents could be beneficial in pa-

tients with increased levels of promoter hypermethylation.

This study also demonstrated features that were shared by

some RCC subtypes, but not all, and underlines the importance

of evaluating these alterations within each RCC subtype as well

as across all subtypes. Previous studies using TCGA data and

other cohorts have shown that BAP1 mutation, but not PBRM1

mutation, correlates with poor survival in ccRCC and these

correlations were confirmed in a mixed cohort of ccRCC and

PRCC TCGA tumors (Chen et al., 2016; Hakimi et al., 2013; Ka-

pur et al., 2013). By analysis of the histologic subtype of RCC,

we confirmed these correlations in ccRCC and showed that

while BAP1 mutations did not correlate with survival in PRCC,

PBRM1 mutations did associate with poor survival in type 1

PRCC.

Assessment of the RCCmetabolic states within RCC revealed

significant metabolic alterations. High ribose metabolism gene

expression was present in both ccRCC and CIMP-RCC, with

CIMP-RCC showing the greatest expression, likely due to the

increased production of NADPH counteracting the cellular stress

induced by the loss of fumarate hydratase in these tumors (Ooi

et al., 2011; Patra and Hay, 2014; Sourbier et al., 2014). Type 2

PRCC had increased expression of the glycolysis, ribose meta-

bolism, and Krebs cycle genes in comparison to type 1 PRCC,

suggesting a more metabolically active tumor, consistent with

its more aggressive nature. Increased expression of the ribose

metabolism genes correlated with poor survival in both ccRCC

and PRCC. These findings suggest that targeting the ribose

metabolism pathway could be a potential therapeutic approach

in ccRCC, type 2 PRCC, and CIMP-RCC.

The immune expression signature is an increasingly important

feature of ccRCC, given the recent introduction of checkpoint in-

hibitor therapy (Lee and Motzer, 2016; Motzer et al., 2015), and

patterns of immune infiltration in RCC have been observed in

several studies (Chen et al., 2016; Geissler et al., 2015). The

role of this feature in determining the therapeutic responsiveness

of ccRCC will be important in future therapeutic planning. A

recent study using TCGA RCC data demonstrated that differ-

ences in expression in specific checkpoint-related genes, such

as PDCD1 (PD1) and CD247 (PDL1), correlated with patient
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survival within ccRCC cases (Chen et al., 2016). While we

observed the same general pattern as previously seen with

PRCC overall demonstrating little expression of the immune

signature associated with ccRCC, we found CIMP-RCC to

have an increased immune signature expression for select im-

mune gene signatures, including the Th2 gene signature, like

that seen in ccRCC. This suggests this most aggressive type

of RCC, CIMP-RCC, may benefit from checkpoint inhibitor ther-

apy in a similar manner to ccRCC. Although the Th2 gene signa-

ture was considerably higher in ccRCC and CIMP-RCC tumors

compared to other tumor subtypes, the relative levels of Th2

gene signature within each major RCC histologic subtype corre-

latedwith poor patient survival, as had been previously observed

in ccRCC (Sxenbabao�glu et al., 2016). This suggests that once

expression ranges are defined for each subtype, this Th2 gene

signature could provide a useful prognostic marker for all RCC

subtypes.

While the current study confirmed the previous finding of

CIMP-RCC as a specific PRCC subtype, in this analysis we

identified a subset of metabolically divergent (MD) ChRCC

that also demonstrated a uniform and distinct metabolic

expression pattern associated with extremely poor survival.

The MD-ChRCC had decreased Krebs cycle, ETC, and AMPK

gene expression and increased ribose metabolism gene

expression similar to higher-stage ccRCCs. All the MD-ChRCC

were high stage and generally lacked the classic ChRCC-asso-

ciated pattern of chromosomal loss, and most demonstrated

sarcomatoid differentiation. A recent study has also shown a

correlation between the absence of the classical ChRCC chro-

mosome loss and aggressive, high-grade, metastatic ChRCC

(Casuscelli et al., 2017). Many of these MD-ChRCC features

are represented in a recently characterized sarcomatoid

ChRCC-derived cell line that could provide a model for further

investigation of these tumors (Yang et al., 2017). The combina-

tion of histopathology and expression analysis may provide a

definitive classification for ChRCC and enable the identification

of aggressive variants that may require alternativemanagement

and therapy, including the potential for adjuvant therapy.

Understanding the molecular and genetic features that char-

acterize the RCC subtypes will provide the foundation for the

development of improved methods for both clinical and surgical

management and therapies to treat this disease. Besides identi-

fying discrete genomic characteristics that are critical for the un-

derstanding of individual RCC subtypes, we have identified uni-

fying features, such as the effect of the Th2 immune gene

signature on survival, which cross disease subtypes and which

will help provide the foundation for the development of effective

forms of therapy for patients with advanced disease.
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G., Picardi, E., Pesole, G., and Attimonelli, M. (2014). MToolBox: a highly auto-

mated pipeline for heteroplasmy annotation and prioritization analysis of hu-
12 Cell Reports 23, 1–14, April 3, 2018
man mitochondrial variants in high-throughput sequencing. Bioinformatics

30, 3115–3117.

Cancer Genome Atlas Research Network (2013). Comprehensive molecular

characterization of clear cell renal cell carcinoma. Nature 499, 43–49.

Cancer Genome Atlas Research Network; Linehan, W.M., Spellman, P.T.,

Ricketts, C.J., Creighton, C.J., Fei, S.S., Davis, C., Wheeler, D.A., Murray,

B.A., Schmidt, L., Vocke, C.D., et al. (2016). Comprehensivemolecular charac-

terization of papillary renal-cell carcinoma. N. Engl. J. Med. 374, 135–145.

Casuscelli, J., Weinhold, N., Gundem, G., Wang, L., Zabor, E.C., Drill, E.,

Wang, P.I., Nanjangud, G.J., Redzematovic, A., Nargund, A.M., et al. (2017).

Genomic landscape and evolution of metastatic chromophobe renal cell car-

cinoma. JCI Insight 2, 2.

Chen, F., Zhang, Y., Sxenbabao�glu, Y., Ciriello, G., Yang, L., Reznik, E., Shuch,

B., Micevic, G., De Velasco, G., Shinbrot, E., et al. (2016). Multilevel genomics-

based taxonomy of renal cell carcinoma. Cell Rep. 14, 2476–2489.

Chu, A., Robertson, G., Brooks, D., Mungall, A.J., Birol, I., Coope, R., Ma, Y.,

Jones, S., and Marra, M.A. (2016). Large-scale profiling of microRNAs for The

Cancer Genome Atlas. Nucleic Acids Res. 44, e3.

Cibulskis, K., Lawrence,M.S., Carter, S.L., Sivachenko, A., Jaffe, D., Sougnez,

C., Gabriel, S., Meyerson, M., Lander, E.S., and Getz, G. (2013). Sensitive

detection of somatic point mutations in impure and heterogeneous cancer

samples. Nat. Biotechnol. 31, 213–219.

Davis, C.F., Ricketts, C.J., Wang, M., Yang, L., Cherniack, A.D., Shen, H., Bu-

hay, C., Kang, H., Kim, S.C., Fahey, C.C., et al.; The Cancer Genome Atlas

Research Network (2014). The somatic genomic landscape of chromophobe

renal cell carcinoma. Cancer Cell 26, 319–330.

Dobin, A., Davis, C.A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S., Batut,

P., Chaisson,M., andGingeras, T.R. (2013). STAR: ultrafast universal RNA-seq

aligner. Bioinformatics 29, 15–21.

Edgar, R.C. (2004). MUSCLE: a multiple sequence alignment method with

reduced time and space complexity. BMC Bioinformatics 5, 113.

Fan, C., Prat, A., Parker, J.S., Liu, Y., Carey, L.A., Troester, M.A., and Perou,

C.M. (2011). Building prognostic models for breast cancer patients using clin-

ical variables and hundreds of gene expression signatures. BMC Med. Geno-

mics 4, 3.

Fan, Y., Xi, L., Hughes, D.S., Zhang, J., Zhang, J., Futreal, P.A., Wheeler, D.A.,

andWang, W. (2016). MuSE: accounting for tumor heterogeneity using a sam-

ple-specific error model improves sensitivity and specificity in mutation calling

from sequencing data. Genome Biol. 17, 178.

Geissler, K., Fornara, P., Lautenschläger, C., Holzhausen, H.J., Seliger, B., and

Riemann, D. (2015). Immune signature of tumor infiltrating immune cells in

renal cancer. OncoImmunology 4, e985082.

Hakimi, A.A., Ostrovnaya, I., Reva, B., Schultz, N., Chen, Y.B., Gonen, M., Liu,

H., Takeda, S., Voss, M.H., Tickoo, S.K., et al.; ccRCC Cancer Genome Atlas

(KIRC TCGA) Research Network investigators (2013). Adverse outcomes in

clear cell renal cell carcinoma with mutations of 3p21 epigenetic regulators

BAP1 and SETD2: a report by MSKCC and the KIRC TCGA research network.

Clin. Cancer Res. 19, 3259–3267.

Hamilton, E., and Infante, J.R. (2016). Targeting CDK4/6 in patients with can-

cer. Cancer Treat. Rev. 45, 129–138.

Hirata, H., Hinoda, Y., Nakajima, K., Kawamoto, K., Kikuno, N., Ueno, K., Ya-

mamura, S., Zaman, M.S., Khatri, G., Chen, Y., et al. (2011). Wnt antagonist

DKK1 acts as a tumor suppressor gene that induces apoptosis and inhibits

proliferation in human renal cell carcinoma. Int. J. Cancer 128, 1793–1803.

Hsieh, J.J., Purdue,M.P., Signoretti, S., Swanton, C., Albiges, L., Schmidinger,

M., Heng, D.Y., Larkin, J., and Ficarra, V. (2017). Renal cell carcinoma. Nat.

Rev. Dis. Primers 3, 17009.

Iglesia, M.D., Vincent, B.G., Parker, J.S., Hoadley, K.A., Carey, L.A., Perou,

C.M., and Serody, J.S. (2014). Prognostic B-cell signatures using mRNA-seq

in patients with subtype-specific breast and ovarian cancer. Clin. Cancer

Res. 20, 3818–3829.

Kapur, P., Peña-Llopis, S., Christie, A., Zhrebker, L., Pavı́a-Jiménez, A., Rath-
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Schmidt,M., Böhm, D., von Törne, C., Steiner, E., Puhl, A., Pilch, H., Lehr, H.A.,

Hengstler, J.G., Kölbl, H., and Gehrmann, M. (2008). The humoral immune sys-

tem has a key prognostic impact in node-negative breast cancer. Cancer Res.

68, 5405–5413.

Sxenbabao�glu, Y., Gejman, R.S., Winer, A.G., Liu, M., Van Allen, E.M., de Ve-

lasco, G., Miao, D., Ostrovnaya, I., Drill, E., Luna, A., et al. (2016). Tumor im-

mune microenvironment characterization in clear cell renal cell carcinoma

identifies prognostic and immunotherapeutically relevant messenger RNA sig-

natures. Genome Biol. 17, 231.

Sourbier, C., Ricketts, C.J., Matsumoto, S., Crooks, D.R., Liao, P.J., Mannes,

P.Z., Yang, Y., Wei, M.H., Srivastava, G., Ghosh, S., et al. (2014). Targeting

ABL1-mediated oxidative stress adaptation in fumarate hydratase-deficient

cancer. Cancer Cell 26, 840–850.

Teschendorff, A.E., Miremadi, A., Pinder, S.E., Ellis, I.O., and Caldas, C.

(2007). An immune response gene expression module identifies a good

prognosis subtype in estrogen receptor negative breast cancer. Genome

Biol. 8, R157.

Tiedemann, R.L., Hlady, R.A., Hanavan, P.D., Lake, D.F., Tibes, R., Lee, J.H.,

Choi, J.H., Ho, T.H., and Robertson, K.D. (2016). Dynamic reprogramming of

DNA methylation in SETD2-deregulated renal cell carcinoma. Oncotarget 7,

1927–1946.

Trapnell, C., Hendrickson, D.G., Sauvageau, M., Goff, L., Rinn, J.L., and

Pachter, L. (2013). Differential analysis of gene regulation at transcript resolu-

tion with RNA-seq. Nat. Biotechnol. 31, 46–53.

Urakami, S., Shiina, H., Enokida, H., Hirata, H., Kawamoto, K., Kawakami,

T., Kikuno, N., Tanaka, Y., Majid, S., Nakagawa, M., et al. (2006). Wnt

antagonist family genes as biomarkers for diagnosis, staging, and prognosis

of renal cell carcinoma using tumor and serum DNA. Clin. Cancer Res. 12,

6989–6997.

Van Loo, P., Nordgard, S.H., Lingjærde, O.C., Russnes, H.G., Rye, I.H., Sun,

W., Weigman, V.J., Marynen, P., Zetterberg, A., Naume, B., et al. (2010).

Allele-specific copy number analysis of tumors. Proc. Natl. Acad. Sci. USA

107, 16910–16915.
Cell Reports 23, 1–14, April 3, 2018 13

http://refhub.elsevier.com/S2211-1247(18)30436-4/sref23
http://refhub.elsevier.com/S2211-1247(18)30436-4/sref23
http://refhub.elsevier.com/S2211-1247(18)30436-4/sref24
http://refhub.elsevier.com/S2211-1247(18)30436-4/sref24
http://refhub.elsevier.com/S2211-1247(18)30436-4/sref24
http://refhub.elsevier.com/S2211-1247(18)30436-4/sref24
http://refhub.elsevier.com/S2211-1247(18)30436-4/sref25
http://refhub.elsevier.com/S2211-1247(18)30436-4/sref25
http://refhub.elsevier.com/S2211-1247(18)30436-4/sref25
http://refhub.elsevier.com/S2211-1247(18)30436-4/sref25
http://refhub.elsevier.com/S2211-1247(18)30436-4/sref26
http://refhub.elsevier.com/S2211-1247(18)30436-4/sref26
http://refhub.elsevier.com/S2211-1247(18)30436-4/sref27
http://refhub.elsevier.com/S2211-1247(18)30436-4/sref27
http://refhub.elsevier.com/S2211-1247(18)30436-4/sref27
http://refhub.elsevier.com/S2211-1247(18)30436-4/sref27
http://refhub.elsevier.com/S2211-1247(18)30436-4/sref28
http://refhub.elsevier.com/S2211-1247(18)30436-4/sref28
http://refhub.elsevier.com/S2211-1247(18)30436-4/sref29
http://refhub.elsevier.com/S2211-1247(18)30436-4/sref29
http://refhub.elsevier.com/S2211-1247(18)30436-4/sref29
http://refhub.elsevier.com/S2211-1247(18)30436-4/sref30
http://refhub.elsevier.com/S2211-1247(18)30436-4/sref30
http://refhub.elsevier.com/S2211-1247(18)30436-4/sref30
http://refhub.elsevier.com/S2211-1247(18)30436-4/sref30
http://refhub.elsevier.com/S2211-1247(18)30436-4/sref31
http://refhub.elsevier.com/S2211-1247(18)30436-4/sref31
http://refhub.elsevier.com/S2211-1247(18)30436-4/sref32
http://refhub.elsevier.com/S2211-1247(18)30436-4/sref32
http://refhub.elsevier.com/S2211-1247(18)30436-4/sref32
http://refhub.elsevier.com/S2211-1247(18)30436-4/sref32
http://refhub.elsevier.com/S2211-1247(18)30436-4/sref33
http://refhub.elsevier.com/S2211-1247(18)30436-4/sref33
http://refhub.elsevier.com/S2211-1247(18)30436-4/sref34
http://refhub.elsevier.com/S2211-1247(18)30436-4/sref34
http://refhub.elsevier.com/S2211-1247(18)30436-4/sref34
http://refhub.elsevier.com/S2211-1247(18)30436-4/sref35
http://refhub.elsevier.com/S2211-1247(18)30436-4/sref35
http://refhub.elsevier.com/S2211-1247(18)30436-4/sref35
http://refhub.elsevier.com/S2211-1247(18)30436-4/sref35
http://refhub.elsevier.com/S2211-1247(18)30436-4/sref36
http://refhub.elsevier.com/S2211-1247(18)30436-4/sref36
http://refhub.elsevier.com/S2211-1247(18)30436-4/sref36
http://refhub.elsevier.com/S2211-1247(18)30436-4/sref36
http://refhub.elsevier.com/S2211-1247(18)30436-4/sref37
http://refhub.elsevier.com/S2211-1247(18)30436-4/sref37
http://refhub.elsevier.com/S2211-1247(18)30436-4/sref37
http://refhub.elsevier.com/S2211-1247(18)30436-4/sref37
http://refhub.elsevier.com/S2211-1247(18)30436-4/sref38
http://refhub.elsevier.com/S2211-1247(18)30436-4/sref38
http://refhub.elsevier.com/S2211-1247(18)30436-4/sref38
http://refhub.elsevier.com/S2211-1247(18)30436-4/sref39
http://refhub.elsevier.com/S2211-1247(18)30436-4/sref39
http://refhub.elsevier.com/S2211-1247(18)30436-4/sref39
http://refhub.elsevier.com/S2211-1247(18)30436-4/sref39
http://refhub.elsevier.com/S2211-1247(18)30436-4/sref40
http://refhub.elsevier.com/S2211-1247(18)30436-4/sref40
http://refhub.elsevier.com/S2211-1247(18)30436-4/sref40
http://refhub.elsevier.com/S2211-1247(18)30436-4/sref40
http://refhub.elsevier.com/S2211-1247(18)30436-4/sref41
http://refhub.elsevier.com/S2211-1247(18)30436-4/sref41
http://refhub.elsevier.com/S2211-1247(18)30436-4/sref41
http://refhub.elsevier.com/S2211-1247(18)30436-4/sref42
http://refhub.elsevier.com/S2211-1247(18)30436-4/sref42
http://refhub.elsevier.com/S2211-1247(18)30436-4/sref43
http://refhub.elsevier.com/S2211-1247(18)30436-4/sref43
http://refhub.elsevier.com/S2211-1247(18)30436-4/sref43
http://refhub.elsevier.com/S2211-1247(18)30436-4/sref44
http://refhub.elsevier.com/S2211-1247(18)30436-4/sref44
http://refhub.elsevier.com/S2211-1247(18)30436-4/sref44
http://refhub.elsevier.com/S2211-1247(18)30436-4/sref44
http://refhub.elsevier.com/S2211-1247(18)30436-4/sref45
http://refhub.elsevier.com/S2211-1247(18)30436-4/sref45
http://refhub.elsevier.com/S2211-1247(18)30436-4/sref45
http://refhub.elsevier.com/S2211-1247(18)30436-4/sref45
http://refhub.elsevier.com/S2211-1247(18)30436-4/sref45
http://refhub.elsevier.com/S2211-1247(18)30436-4/sref45
http://refhub.elsevier.com/S2211-1247(18)30436-4/sref46
http://refhub.elsevier.com/S2211-1247(18)30436-4/sref46
http://refhub.elsevier.com/S2211-1247(18)30436-4/sref47
http://refhub.elsevier.com/S2211-1247(18)30436-4/sref47
http://refhub.elsevier.com/S2211-1247(18)30436-4/sref47
http://refhub.elsevier.com/S2211-1247(18)30436-4/sref47
http://refhub.elsevier.com/S2211-1247(18)30436-4/sref48
http://refhub.elsevier.com/S2211-1247(18)30436-4/sref48
http://refhub.elsevier.com/S2211-1247(18)30436-4/sref48
http://refhub.elsevier.com/S2211-1247(18)30436-4/sref48
http://refhub.elsevier.com/S2211-1247(18)30436-4/sref49
http://refhub.elsevier.com/S2211-1247(18)30436-4/sref49
http://refhub.elsevier.com/S2211-1247(18)30436-4/sref49
http://refhub.elsevier.com/S2211-1247(18)30436-4/sref49
http://refhub.elsevier.com/S2211-1247(18)30436-4/sref50
http://refhub.elsevier.com/S2211-1247(18)30436-4/sref50
http://refhub.elsevier.com/S2211-1247(18)30436-4/sref51
http://refhub.elsevier.com/S2211-1247(18)30436-4/sref51
http://refhub.elsevier.com/S2211-1247(18)30436-4/sref51
http://refhub.elsevier.com/S2211-1247(18)30436-4/sref51
http://refhub.elsevier.com/S2211-1247(18)30436-4/sref52
http://refhub.elsevier.com/S2211-1247(18)30436-4/sref52
http://refhub.elsevier.com/S2211-1247(18)30436-4/sref52
http://refhub.elsevier.com/S2211-1247(18)30436-4/sref52
http://refhub.elsevier.com/S2211-1247(18)30436-4/sref52
http://refhub.elsevier.com/S2211-1247(18)30436-4/sref52
http://refhub.elsevier.com/S2211-1247(18)30436-4/sref52
http://refhub.elsevier.com/S2211-1247(18)30436-4/sref53
http://refhub.elsevier.com/S2211-1247(18)30436-4/sref53
http://refhub.elsevier.com/S2211-1247(18)30436-4/sref53
http://refhub.elsevier.com/S2211-1247(18)30436-4/sref53
http://refhub.elsevier.com/S2211-1247(18)30436-4/sref54
http://refhub.elsevier.com/S2211-1247(18)30436-4/sref54
http://refhub.elsevier.com/S2211-1247(18)30436-4/sref54
http://refhub.elsevier.com/S2211-1247(18)30436-4/sref54
http://refhub.elsevier.com/S2211-1247(18)30436-4/sref55
http://refhub.elsevier.com/S2211-1247(18)30436-4/sref55
http://refhub.elsevier.com/S2211-1247(18)30436-4/sref55
http://refhub.elsevier.com/S2211-1247(18)30436-4/sref55
http://refhub.elsevier.com/S2211-1247(18)30436-4/sref56
http://refhub.elsevier.com/S2211-1247(18)30436-4/sref56
http://refhub.elsevier.com/S2211-1247(18)30436-4/sref56
http://refhub.elsevier.com/S2211-1247(18)30436-4/sref57
http://refhub.elsevier.com/S2211-1247(18)30436-4/sref57
http://refhub.elsevier.com/S2211-1247(18)30436-4/sref57
http://refhub.elsevier.com/S2211-1247(18)30436-4/sref57
http://refhub.elsevier.com/S2211-1247(18)30436-4/sref57
http://refhub.elsevier.com/S2211-1247(18)30436-4/sref58
http://refhub.elsevier.com/S2211-1247(18)30436-4/sref58
http://refhub.elsevier.com/S2211-1247(18)30436-4/sref58
http://refhub.elsevier.com/S2211-1247(18)30436-4/sref58


Please cite this article in press as: Ricketts et al., The Cancer Genome Atlas Comprehensive Molecular Characterization of Renal Cell Carcinoma, Cell
Reports (2018), https://doi.org/10.1016/j.celrep.2018.03.075
Wilkerson, M.D., and Hayes, D.N. (2010). ConsensusClusterPlus: a class dis-

covery tool with confidence assessments and item tracking. Bioinformatics 26,

1572–1573.

Wu, T.D., and Watanabe, C.K. (2005). GMAP: a genomic mapping and align-

ment program for mRNA and EST sequences. Bioinformatics 21, 1859–1875.

Yang, Y., Vocke, C.D., Ricketts, C.J., Wei, D., Padilla-Nash, H.M., Lang, M.,

Sourbier, C., Killian, J.K., Boyle, S.L., Worrell, R., et al. (2017). Genomic and
14 Cell Reports 23, 1–14, April 3, 2018
metabolic characterization of a chromophobe renal cell carcinoma cell line

model (UOK276). Genes Chromosomes Cancer 56, 719–729.

Ye, K., Schulz, M.H., Long, Q., Apweiler, R., and Ning, Z. (2009). Pindel: a

pattern growth approach to detect break points of large deletions and me-

dium sized insertions from paired-end short reads. Bioinformatics 25,

2865–2871.

http://refhub.elsevier.com/S2211-1247(18)30436-4/sref59
http://refhub.elsevier.com/S2211-1247(18)30436-4/sref59
http://refhub.elsevier.com/S2211-1247(18)30436-4/sref59
http://refhub.elsevier.com/S2211-1247(18)30436-4/sref60
http://refhub.elsevier.com/S2211-1247(18)30436-4/sref60
http://refhub.elsevier.com/S2211-1247(18)30436-4/sref61
http://refhub.elsevier.com/S2211-1247(18)30436-4/sref61
http://refhub.elsevier.com/S2211-1247(18)30436-4/sref61
http://refhub.elsevier.com/S2211-1247(18)30436-4/sref61
http://refhub.elsevier.com/S2211-1247(18)30436-4/sref62
http://refhub.elsevier.com/S2211-1247(18)30436-4/sref62
http://refhub.elsevier.com/S2211-1247(18)30436-4/sref62
http://refhub.elsevier.com/S2211-1247(18)30436-4/sref62


Please cite this article in press as: Ricketts et al., The Cancer Genome Atlas Comprehensive Molecular Characterization of Renal Cell Carcinoma, Cell
Reports (2018), https://doi.org/10.1016/j.celrep.2018.03.075
STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Biological samples

Primary tumor samples Multiple tissue source sites, processed

through the Biospecimen Core Resource

See Biospecimen Acquisition in

EXPERIMENTAL MODEL AND SUBJECT

DETAILS

Critical Commercial Assays

Genome-Wide Human SNP Array 6.0 ThermoFisher Scientific Cat: 901153

Infinium HumanMethylation450

BeadChip Kit

Illumina Cat: WG-314-1002

Illumina Barcoded Paired-End Library

Preparation Kit

Illumina https://www.illumina.com/techniques/

sequencing/ngs-library-prep.html

TruSeq RNA Library Prep Kit Illumina Cat: RS-122-2001

TruSeq PE Cluster Generation Kit Illumina Cat: PE-401-3001

Deposited Data

Raw and processed clinical, array and

sequence data.

Genomic Data Commons https://portal.gdc.cancer.gov/

legacy-archive

Processed RNA sequence data Gene Expression Omnibus https://www.ncbi.nlm.nih.gov/geo/

Digital pathology images Cancer Digital Slide Archive http://cancer.digitalslidearchive.net/

Software and Algorithms

ConsensusClusterPlus Wilkerson and Hayes, 2010 http://bioconductor.org/packages/release/

bioc/html/ConsensusClusterPlus.html

Cufflinks Trapnell et al., 2013 https://cole-trapnell-lab.github.io/cufflinks/

DESeq2 package Love et al., 2014 https://bioconductor.org/packages/

release/bioc/html/DESeq2.html

Genome Analysis Toolkit McKenna et al., 2010 https://software.broadinstitute.org/gatk/

GSNAP Wu and Watanabe, 2005 http://research-pub.gene.com/gmap/

MiXCR v1.7.1 Bolotin et al., 2013 https://mixcr.readthedocs.io/en/latest/

MuTect Cibulskis et al., 2013 http://archive.broadinstitute.org/cancer/

cga/mutect

MUSE Fan et al., 2016 http://bioinformatics.mdanderson.org/

main/MuSE

Pindel Ye et al., 2009 http://gmt.genome.wustl.edu/packages/

pindel/index.html

MUSCLEt Edgar, 2004 http://www.drive5.com/muscle/

MtoolBox Calabrese et al., 2014 https://sourceforge.net/projects/mtoolbox/

Radia Radenbaugh et al., 2014 https://github.com/aradenbaugh/radia

samr Li and Tibshirani, 2013 https://cran.r-project.org/web/packages/

samr

Samtools Li et al., 2009 http://samtools.sourceforge.net/

Somatic Sniper Larson et al., 2012 http://gmt.genome.wustl.edu/packages/

somatic-sniper/

STAR Dobin et al., 2013 https://github.com/alexdobin/STAR

VarScan2 Koboldt et al., 2012 http://varscan.sourceforge.net/

WGCNA package Langfelder and Horvath, 2008 https://labs.genetics.ucla.edu/horvath/

CoexpressionNetwork/Rpackages/

WGCNA/

Other

Firehose, FireBrowse The Broad Institute, Cambridge MA https://gdac.broadinstitute.org/, http://

firebrowse.org/
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CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact,

Dr. W. Marston Linehan (WML@nih.gov).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Biospecimen Acquisition
All biospecimens were acquired by the Cancer Genome Atlas (TCGA) Resource Network. Surgically resected tumor specimens were

collected from patients diagnosed with renal cell carcinoma (RCC) that had preferably not received any prior treatment for their dis-

ease, such as chemotherapy or radiotherapy. Individual institutional review boards at each tissue source site reviewed the protocols

and consent documentation and approved the submission of cases to TCGA. All tumors were staged per the American Joint Com-

mittee on Cancer (AJCC) and each primary tumor specimen had a matched normal tissue specimen. The tissue source sites for the

Cancer Genome Atlas Research Network are listed in the Cancer Genome Atlas Research Network author list for this project.

The initial 894 samples of kidney cancer that were submitted to TCGA were re-evaluated by a panel of expert pathologists that

excluded several samples due to inconsistent or incorrect histologic classification or therapy prior to sample collection. This ac-

counts for the variation in samples compared to the previous Chen et al. study (Chen et al., 2016). The approved 843 tumors

were subdivided by histologic subtype into 6 groups consisting of 488 clear cell (cc)RCC, 160 Type 1 papillary (P)RCC, 70 Type 2

PRCC, 34 unclassified PRCC, 10 CpG island methylator phenotype-associated (CIMP-)RCC, and 81 chromophobe (Ch)RCC based

on the original pathology reports or re-evaluation by a panel of expert urologic pathologists. Six hundred and ninety-three of the tu-

mors had been analyzed in the three individual TCGA marker papers. The clinical and genetic characteristics of these patients are

described in Table S1 in the Supplementary Appendix.

METHOD DETAILS

Somatic Exome Mutation Analysis
Somatic exome sequencing data was available and downloaded for 804 of the 843 pan-kidney tumors representing 463 ccRCC, 266

PRCC, 74 ChRCC. The tumors with sequencing data are designated within Table S1 and all data is accessible via the NCI genome

data commons (https://gdc.cancer.gov/).

A combined MAF (Mutation Annotation Format) file for all samples was produced by extracting the relevant sample data from the

TCGA unified ensemble ‘‘MC3’’ call set and supplementing this with data from the original three TCGA KIRC, KICH, and KIRP pub-

lication for samples not present in the TCGA MC3 dataset. The TCGA unified ensemble ‘‘Multi-Center Mutation Calling in Multiple

Cancers’’ (‘‘MC30’’) call set is the public, open-access, dataset of somatic mutation calls (SNVs and indels) produced as part of

the capstone project using all available of cases within TCGA using six different algorithms (MuTect, MuSE, Pindel, Somatic Sniper,

VarScan2 and Radia) from four centers (Cibulskis et al., 2013; Fan et al., 2016; Koboldt et al., 2012; Larson et al., 2012; Radenbaugh

et al., 2014; Ye et al., 2009).

The significantly mutated genes (SMGs) that had been previously identified by theMutSigCV algorithm in the previous TCGAKIRC,

KICH, and KIRP publications were used as the reference SMGs when evaluating the entire pan-kidney dataset. Pathway analysis for

the HIF pathway, HIPPO pathway, NRF2/ARE pathway, PI3K/AKT pathway and the chromatin remodeling pathways was performed

using gene lists described in Table S2. The pathway analysis involving genes known to be activated in cancer, such as MTOR,

PIK3CA, and NFE2L2, were limited to missense mutations only.

SNP Array-Based Copy Number Analysis
The gene level copy number data (focal_data_by_genes) generated by Affymetrix SNP 6.0 arrays using protocols at the Genome

Analysis Platform of the Broad Institute (McCarroll et al., 2008) was available for 832 of the 843 pan-kidney tumors representing

481 ccRCC, 271 PRCC, and 80 ChRCC. Tumors with copy number data are designated within Table S1 and all data is accessible

via the NCI genome data commons (https://gdc.cancer.gov/). Estimates for gross chromosomal arm gain or loss were produced

by averaging the copy number values for all geneswithin each region. Average values greater than 0.3were considered chromosomal

gain and average values less than �0.3 were considered chromosomal loss. For individual gene copy number analysis, such as

CDKN2A loss, copy number values of less than �0.4 were considered to represent deletion.

RNA Expression Data Analysis
The level 3 RNA-Seq upper quartile normalized RSEM data was available for 839 of the 843 pan-kidney tumors representing 485

ccRCC, 273 PRCC, and 81 ChRCC. Tumors with RNA-seq data are designated within Table S1 and all data is accessible via the

NCI genome data commons and the Gene Expression Omnibus (https://gdc.cancer.gov/ and https://www.ncbi.nlm.nih.gov/geo/).

Analysis of the RNA data was split into miRNA analysis, lncRNA analysis, mRNA signature analysis, and immune gene signature

analysis.
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mRNA Signature Analysis
Raw count data for each sample included was obtained from Gene Expression Omnibus (GSE62944) (Rahman et al., 2015). All sub-

sequent analyses were performed in R open source programming language. For differential expression analysis, RPKM values were

calculated from RNaseq raw counts and upper quantile normalized. For hierarchical clustering and WGCNA, raw count data were

processed and normalized using the variance stabilizing transformation (VST) algorithm implemented by the DESeq2 package

(Love et al., 2014).

Scale-free weighted signed gene co-expression networks were constructed by the WGCNA package (Langfelder and Horvath,

2008). Using the top 11000 varying genes according to their standard deviation, WGCNA was restricted to the 9000 most connected

genes. First, a pairwise gene correlation matrix was calculated with a Pearson correlation analysis, which was transformed into a

weighted matrix to produce an adjacency matrix after raising values by an exponent beta (b = 16). Then the adjacency was trans-

formed into a topological overlapmatrix (TOM). The dynamic tree cutmethodwas used for module identification from the hierarchical

clustering of genes using 1-TOM as the distance measure with a deepSplit value of 2 and a minimum size cutoff of 50 genes. Highly

similar modules were identified by clustering and thenmerged together with a height cut-off of 0.2. Finally, modules and their relation-

ship to clinical traits were identified using Pearson correlation analysis between the modules and external traits. Functional annota-

tion of identified modules was performed using tools provided by the WGCNA package.

Kmeans consensus clustering was performed using ConsensusClusterPlus package (Wilkerson and Hayes, 2010). The K-value of

6 was selected according to the consensus cumulative distribution function, where K > 6 did not produce any appreciable increase in

consensus (Monti et al., 2003; Wilkerson and Hayes, 2010). Hierarchical unsupervised cluster analysis was performed using 7738

genes pertaining to selected WGCNAmodules (see Figure 4 for modules). Hierarchical clustering was performed using average link-

age of Euclidean distance.

Non-coding RNA (lncRNA and miRNA) Sequencing and Analysis
mRNA sequence reads were aligned to the human reference genome (hg38) and transcriptome (Ensembl v82, September 2015) us-

ing STAR 2.4.2a (Dobin et al., 2013). STARwas runwith the following parameters: minimum /maximum intron sizeswere set to 30 and

500,000, respectively; noncanonical, unannotated junctions were removed; maximum tolerated mismatches was set to 10; and the

outSAMstrandField intronmotif option was enabled. The Cuffquant command included with Cufflinks 2.2.1 (Trapnell et al., 2013) was

used to quantify the read abundances per sample, with fragment bias correction and multiread correction enabled, and all other op-

tions set to default. To calculate normalized abundance as fragments per kilobase of exon per million fragments mapped (FPKM), the

Cuffnorm command was used with default parameters. From the FPKM matrix for the 80 tumor samples, we extracted 8167 genes

with ‘‘lincRNA’’ and ‘‘processed_transcript’’ Ensembl biotypes.

From the matrix of 8167 lncRNAs (above), we extracted FPKM profiles for 499 lncRNAs that were robustly expressed (mean

FPKM R 1) and highly variable (R92.5th FPKM variance percentile) across the n = 833 primary tumor cohort. We identified

groups of samples with similar expression profiles by unsupervised consensus clustering with ConsensusClusterPlus (CCP)

1.20.0 (Wilkerson and Hayes, 2010). Calculations were performed using Pearson correlations, partitioning around medoids

(PAM), a gene fraction of 0.95, and 200 iterations. It was anticipated that a hierarchically-related series of finer-grained and

coarser-grained sets of subtypes may be available from a clustering analysis, that a particular clustering solution (i.e., number

of subtypes) from such a series may be a more informative choice for a particular question and context, and that results from

multiple data types may need to be considered in order to identify a clustering solution to report on because it is effective in

contributing to the overall insights (Aine et al., 2015; Ronan et al., 2016). A consensus clustering solution for lncRNAs was

selected by initially considering information for different numbers of clusters and for a range of clustering approaches. The re-

ported clustering solution considered four main factors: a) the consensus membership heatmaps and dendrograms; b) the ‘delta’

plot showing how the area under the cumulative distribution function of consensus membership values increases as the numbers

of clusters increases; c) the profile of silhouette width calculated from the consensus memberships, which we take as a measure

of typical versus atypical cluster membership; and d) how KIRC, KIRP Type 1 and 2, and KICH samples were separated and sub-

divided by the clusters. Thus, we selected an 8-cluster solution after assessing consensus membership heatmaps, dendrograms,

and CCP clustering metrics for up to 10 clusters. To visualize typical versus atypical cluster members, we used the R cluster

package to calculate a profile of silhouette widths (Wcm) from the consensus membership matrix. To generate an abundance

heatmap for the 8-cluster result, used the pheatmap R package (v1.0.2). We ordered the columns to correspond to the above

consensus clustering result. We manually transferred the upper dendrogram graphic from the consensus result to the heatmap

graphic that we were generating. For the rows, we identified a subset of lncRNAs that had a mean FPKM R 10 and a SAM multi-

class (samr 2.0) (Li and Tibshirani, 2013) q value of 0.0 across the clusters (see differential abundance, below), transformed the

FPKM matrix by log10(FPKM + 1), then, in pheatmap, scaled the rows and clustered them with a Pearson distance metric and

Ward clustering.

We compared unsupervised clusters to clinical and molecular covariates by calculating contingency table association p values

using R, with a Chi-square or Fisher exact test for categorical data, and a Kruskal-Wallis test for real-valued data.

We generated miRNA sequencing (miRNA-seq) data from messenger RNA-depleted RNA, as describe in (Chu et al., 2016).

Briefly, we aligned �22-nt reads to the GRCh37/hg19 reference human genome, assigned read count abundances to miRBase
Cell Reports 23, 1–14.e1–e5, April 3, 2018 e3
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v16 stem-loops and 5p and 3pmature strands, and assigned miRBase v20 mature strand names to MIMAT accession IDs. Note that

while we used only reads with exact-match alignments in calculating miRNA abundances, BAM files available from the Genomics

Data Commons (https://gdc.cancer.gov/) include all sequence reads.

For miRNA, mature strand (miR) sequencing data for n = 811 primary tumors, we extracted normalized abundance (RPM) data

matrices for ccRCC (n = 457), PRCC (n = 274), and ChRCC (n = 80, which included n = 65 KICH and n = 15 that were originally

part of the KIRC cohort). From RPM data matrices for the 457, 274 and 65 original samples respectively, we identified the

304 miRs that were the most-variant 25% (of 1214 miRBase v16 strands) for each cohort. Combining the three lists gave 369 unique

miR names. In a batch-corrected data matrix containing 743miRs and 9,555 primary tumor samples (of 10,825 total samples), 367 of

the 369miRs were available, and we generated a batch-corrected data matrix with 367miR and 811 primary tumor samples that was

the input to unsupervised clustering.

Using ConsensusClusterPlus v1.40.0 we assessed consensusmembership heatmaps and other metrics for six approaches, using

Pearson or Spearman correlations as distancemetrics, and hierarchical, partitioning aroundmeoids (PAM) or k-means clustering. For

each approach, we assessed solutions with between two and nine clusters. We report on a 6-cluster solution for Spearman corre-

lations, PAM clustering, and 1000 iterations with a randommature-strand fraction of 0.85 for each iteration. We used a similar selec-

tion methodology for the 6-cluster solution as was described above for the lncRNAs.

We used an approach similar to that described above for lncRNAs to generate a clustering heatmap for miRNAs. We first identified

miRNAs that were differentially abundant between the unsupervised miRNA clusters using a SAM multiclass analysis (samr 2.0)

(Li and Tibshirani, 2013) in R, with the 367-x-811 RPM input data matrix, 1000 permutations, no array centering, a Wilcoxon test sta-

tistic, and an FDR threshold of 0.05. For the heatmap we used miRNAs that had larger SAMseq scores and q-values of 0.0. We or-

dered the data matrix columns to match the clustering result, manually transferred over the upper dendrogram from the consensus

clustering graphic, then transformed each row of thematrix by log10(RPM+1) and used the pheatmapR package (v1.0.2) to scale and

cluster only the rows.

We generated a Kaplan-Meier plot for the miRNA clusters using the R survival package v2-41.3. We compared unsupervised clus-

ters to clinical and molecular covariates by calculating contingency table association p values using R, with a Chi-square or Fisher

exact test for categorical data, and a Kruskal-Wallis test for real-valued data.

Immune Gene Signature Analysis
Immune gene signatures were derived from previously published works (Beck et al., 2009; Bindea et al., 2013; Fan et al., 2011; Iglesia

et al., 2014; Kardos et al., 2016; Palmer et al., 2006; Rody et al., 2009; Rody et al., 2011; Schmidt et al., 2008; Teschendorff et al.,

2007). RSEM upper quartile normalized, log-2 transformed, and mean centered RNA-seq data was matched to predefined immune

gene signature clusters via Entrez IDs. Each gene signature was calculated as the average value of all genes included in the signature

(Table S4). Differential expression for each gene signature was analyzed between kidney cancer types and subtypes via one-way

ANOVA. These p values were adjusted for multiple testing using the Benjamini-Hochberg procedure. For hazard ratio forest plots,

univariate Cox proportional hazards (CoxPH) model was used with signature/clinical variable as a continuous variable compared

to patient overall survival. T cell receptor repertoire analysis was performed using MiXCR v1.7.1 on default alignment and assemble

settings (Bolotin et al., 2013). Diversity measurements were analyzed between kidney cancer types and subtypes via Mann-Whitney

U-test.

DNA Methylation Analysis
Two generations of Illumina Infinium DNA Methylation BeadArrays, including the HumanMethylation27 (HM27) and

HumanMethylation450 (HM450) arrays, were used to assay 824 pan-kidney tumors (65 KICH, 485 KIRC and 274 KIRP)

and 392 normal kidney samples in total (Table S1). All data is available from the NCI genome data commons (https://gdc.

cancer.gov/).

Data from HM27 and HM450 were combined and further normalized using a probe-by-probe proportional rescaling method to

yield a common set of 22,601 probes with comparative methylation levels between the two platforms, as described in details on Syn-

apse (Syn7073804). Briefly, we rescaled data on HM27 based on between-platform difference measured by technical replicates.

Probes were further filtered based on 34 technical replicates measured together with the KIRC samples by removing those showing

a standard deviation of 0.05 or above. Unsupervised clustering was performed based on cancer-specific autosomal loci, which were

defined as unmethylated probes in all normal tissue types aswell as sorted blood populations (mean beta value < 0.2), butmethylated

(beta value > 0.3) in more than 5% samples within any of the kidney tumor type (for tumor type with less than 100 samples, we require

the portion of methylated samples to be greater than 10% instead). To minimize the influence of tumor purity, we dichotomize the

methylation data into 0’s and 1’s with a beta value cut off of 0.3, and used Ward’s method to cluster the distance matrix computed

with the Jaccard Index. Heatmaps were generated based on row and column orders calculated as above and colored by dichoto-

mized beta values.

The DNAmethylation level as interrogated by cg07684796, cg15839448 was used for DKK1, and SFRP1, respectively, with a beta

value of 0.3 or more considered evidence for epigenetic silencing.
e4 Cell Reports 23, 1–14.e1–e5, April 3, 2018

https://gdc.cancer.gov/
https://gdc.cancer.gov/
https://gdc.cancer.gov/


Please cite this article in press as: Ricketts et al., The Cancer Genome Atlas Comprehensive Molecular Characterization of Renal Cell Carcinoma, Cell
Reports (2018), https://doi.org/10.1016/j.celrep.2018.03.075
Survival Analysis
The Kaplan-Meier method was used to generate curves for overall survival and the Log-rank test was used to assess the univariate

survival differences with no correction for multiple testing, unless otherwise stated in specific analyses. Overall survival was defined

as the time from the nephrectomy to death of any cause.

mtDNA Sequence and Copy Number Analysis
Whole exome sequencing (WXS) BAM files, sequenced at BCM Sequencing Center, were obtained for 66 ChRCC, 153 ccRCC, and

128 PRCC tumor samples and corresponding blood or normal tissue DNA. BAM files were used as input of the MToolBox pipeline,

that includes GSNAP, MUSCLE, and SAMtools, to align reads to the Revised Cambridge Reference Sequence (rCRS) for human

mitochondrial DNA, extract variant alleles, quantify their heteroplasmy levels and related confidence intervals, and obtain functional

annotation of the identified variants.(Calabrese et al., 2014; Edgar, 2004; Li et al., 2009; Wu and Watanabe, 2005) Samples

with > 75%mtDNA sequence coverage in Tumor and Normal DNA and variants with > 5%mutation load were considered for further

analysis (61 ChRCC, 66 ccRCC, and 99 PRCC). Variant tables from tumor and corresponding normal DNA were compared to deter-

mine somatic mutations, which were then classified according to criteria outlined in Figure S2F.

The mtDNA copy number (m) was calculated for samples with mtDNA sequence data as the ratio of the number of sequencing

reads aligning to themitochondrial genome (rm) and the nuclear genome (rn) according to the following formula: m = rm/rn3R. Correc-

tion for tumor ploidy and purity (R) was calculated as RTumor = (Purity 3 Ploidy+(1�Purity) 3 2)/2. Allele-specific copy number and

estimates of tumor ploidy and purity were calculated with ASCAT (Reznik et al., 2016; Reznik et al., 2017; Van Loo et al., 2010) using

matched Affymetrix SNP6 array data from tumor and normal tissue. Batch effect on exome enrichment was corrected for by applying

a linear model that accounted for plate and center IDs as well as tissue type.

QUANTIFICATION AND STATISTICAL ANALYSIS

For all analyses, significance was determined as a p value < 0.05 and corrected for multiple testing where specified. Univariate anal-

ysis was performed unless otherwise specified. Survival analyses were performed using GraphPad Prism� (GraphPad Software,

Inc.) or by individually specified methodologies. In all cases the ‘‘n’’ represents individual patients from which a single tumor was

evaluated.

DATA AND SOFTWARE AVAILABILITY

Raw and processed clinical, array and sequence data are all available via the Genomic Data Commons download portal (https://

portal.gdc.cancer.gov) or Gene Expression Omnibus (https://www.ncbi.nlm.nih.gov/geo/ - GSE62944) and the digital pathology im-

ages are all available from the Cancer Digital Slide Archive (http://cancer.digitalslidearchive.net/)
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